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The intramolecular anodic olefin coupling reaction is an intrigu- Scheme 1
ing method for making new carbertarbon bonds and generating
new ring skeletond? The reactions have been initiated by the
oxidation of either an enol ether or a ketene acetal, and the ensuing
radical cation intermediates were trapped with a variety of nucleo-
philes. The cyclizations are compatible with the synthesis of fused
and bridged bicyclic compounds, the generation of quaternary Ineleganolide
carbons’ and the use of very simple reaction setéips. U
In principle, intramolecular anodic olefin coupling reactions can
serve as a versatile tool for synthesis of a wide variety of complex H 0B
molecular architectures. For example, consider the retrosynthesis 0( S Z — o
of ineleganolideshown in Scheme 1. In this plan, an intramolecular o H og\ﬁ)
anodic olefin coupling reaction would be used to generate a new Corey Lactor‘%
bond between £€and G in 1. While both G and G of the five-
membered ring ene diol ether can potentially participate in bond Scheme 2

formation, molecular modeling suggests that the strain of the ring RVC Anode
syste_m would fa\_/or s_even-membered ring formgtion. However,_an ) o gﬁ‘g}?‘h"de o OMe oMo
enediol ether moiety like the one present in the five-membered ring <:I/\/8 dg” <1'2’
of 1 has never before been employed in an oxidative cyclization  { H oue 50 MsOHICH,CI, L
reaction. Does the use of this new initiating group and new radical 2.2 Fimole
cation intermediate interfere with the ability of the reaction to make \ (60-70%) z\ z\
carbon-carbon bonds? Any effort to explore the synthetic potential MeO 3
of an oxidative cyclization like the one proposed in Scheme 1 must
begin by addressing this question. Scheme 3

Previous studies comparing cyclizations originating from enol | = H - AN " y
ether derived radical cations to cyclizations originating from ketene P LiCIO, Me~l -0 x Me~l-O  ome
acetal derived radical cations indicated that adding a second /) L 2.6-utidine H Y .~
donating group to the initiating olefin and subsequent radical cation 10% MeOH/CH;CN OMe O™ NotBu
aided carborrcarbon bond formatio??But in those cases, the extra N 2.0 F/mole OMe She
electron-donating group on the double bond not only increased the,, §
electron density of the double bond and subsequent radical cation 6.R=0oMe - -

i iz ati isi 7.R=Me 10.73% (X = OMe, Y = Me)  —
but also increased the polarization of the system. Is this important?  g' ¢~ 6&0)0t-8u 11.38% (X = Y = OC(0)0) 12 26%

The cyclization proposed in Scheme 1 provided us with an 9.R=0OTf - -
opportunity to investigate this question. We report herein that it led cleanly to monomeric products. There was no evidence of
polarization of the radical cation is the determining factor in radical cation polymerization. So what stopped the cyclization? Was
governing carborricarbon bond formation in an intramolecular  the conformational constraint too rigid in that it prevented approach
anodic olefin coupling reaction and that enediol ether type substratesof the enol ether trapping group to the radical cation, or did the
can serve as participants in the cyclization if properly substituted. second electron-donating group on the radical cation intermediate
Believing that the success of N,O-ketene acetal derived cycliza- hinder carbor-carbon bond formation?
tions stemmed from the electron-richness of the intermediate radical In order to address this question, substréie® were studied
cation, our first attempt at the cyclization sought to answer questions (Scheme 3J. Once again, the substrate having an additional
about the use of an enediol ether initiating group while demonstrat- methoxy substituent on the five-membered ring double ba@)d (
ing the utility of conformational constraints for controlling the led to none of the desired cyclized product. Instead, a &%
regiochemistry of the reaction. Namely, bicyclic substiat@as yield of uncyclized materials again arising from elimination and
synthesized and submitted to the anodic oxidation reaction (Schemesolvent trapping of the radical cation resulted. For comparison,
2). Surprisingly, the oxidation d generated no cyclized product.  anodic oxidation of substratecleanly led to the cyclized product
Instead, a 66 70% vyield of uncyclized material was generated as in a 73% isolated yield, a result that was consistent with earlier
an inseparable mixture. While inseparable, the products could bereactions leading to fused- and bridged-bicyclic ring skeletons.
tentatively assigned as elimination and solvent-trapping products Clearly, there was no conformational bias in this system preventing
4 and5.% While rigorous characterization was not possible, all of the cyclization. So in direct contrast to earlier results using ketene
the products observed still possessed the side chain enol etheacetal substrates, the presence of a second donor group on the
moiety. The radical cation intermediate was “well-behaved” in that radical cation derived from substréstopped carboncarbon bond
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H H H H the preparative oxidation &must be the result of a faster methanol
Me o] Me (o] Me (o] Me (o) . . . . . .
)—Hs )—Hs —Hs —Hs trapping reaction relative to the oxidations @fand 8. This
H b Y ) ! observation indicates that a preparative cyclization originating from
e . . .
° O\FO orf 6 might be successful if the methanol solvent can be avoided.
R R R Ot-Bu R Finally, there were limits to how far the idea of polarization vs
R = CH=CHOMe electron-richness of the enediol ether moiety could be pushed. In
6 7 8 9 .
Epp= +0.81 +1.10 +1.25 +1.44 the case of substrat@ the triflate group proved to be electron-
8Hs= 5.82 5.96 6.50 6.56 withdrawing and raised the oxidation potential of the enediol ether
R = CH,0Piv to a point where it was significantly higher than the potential of
13 14 15 16 & i ” i
Eyp= +084 18 130 192 the er_wol ether trappmg_group . For example, compare the pivolyl
' substituted substrats with compound. The E, value forl16 of
Figure 1. +1.92 V vs Ag/AgCl is the oxidation potential of the triflate

substituted five-membered ring double bond. Hg value for9

of +1.44 V vs Ag/AgCl is consistent with oxidation of the methoxy
enol ether on the side chalihin the case 08, preparative oxidation
led to methoxylation of the side chain enol ether and no oxidation
of the five-membered ring double bond. The lack of cyclization
originating from a side-chain radical cation is consistent with earlier
anodic olefin coupling reactions that behaved like radical cycliza-

formation. This observation suggested that it was polarization of
the radical cation in the ketene acetal derived cyclizations that
favored carborrcarbon bond formation. This was a testable idea.

In substrate8, the methoxy group used in substréewas
replaced with d@-butoxycarbonyl substituent. Ester substituents are
known to be electronically neutral. For example, the placement of
a pivaloyloxy substituent on an electron-rich aromatic ring leads . . . o
to no change in the oxidation potential of the aromatic firtgnce, tlons_ n _that the_?/]lzwere very sensitive to steric hindrance on the
in the current substrates the use of such a group should lead to atermlnatlng Ol.ef' ) . . .

In conclusion, we have found that anodic olefin coupling

less-electron-rich but more polar initiating olefin (and subsequent reactions do tolerate a second donor aroun on the olefin leading to
radical cation). This effect is illustrated in Figure 1. Thg, data lor . S€eco group ' aing
the radical cation, but only if such a group increases or maintains

d b li It t Ag/Ag& id o . .
(measure y cyclic voltammetry vs Ag/Ag&)provides an the polarization of the radical cation. Hence, for a ketene acetal

indication of the electron-richness of the substrate, while the L -

chemical shift of the proton at @rovides evidence for the polarity type substrfate, Itis benefma! to add the second donor group, bqt

of the double bond (the greater the positive charge character at C for_ an enedlql typ_e_SL_Jbstrate like the one proposed for the synthesis

the greater the chemical shift). This data shows that in moving from of |nel_eganollde, i IS |_m_pqr‘[ant ‘O.m"?"‘e sure that the second oxygen
substituent on the initiating olefin is electronically neutral. With

substrate6 to substrated, the five-membered ring enol ether this information, we are now in position to address the regiochem
becomes significantly less electron-rich and significantly more polar. . - : : . i
9 y 9 y P istry of the cyclization proposed in Scheme 1. This work is currently

Hence, if polarization determines the degree of catbarbon bond
underway.

formation and not the electron-richness of the double bond, then . . .
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6. This was indeed the case (Scheme 3), and the anodic cyclization, Supgotrtlr;gsjrlfgrmatlon Avlallable:d Th? pr;)r::edlljrets fcl)r s_ynthestl_z-

led to a 62% yield of cyclized product as a mixture of a cyclic Ing substrate » & general procedure for the electrolysis reaction,
N . and spectral data for all new compounds. This material is available

carbonate X1) and elimination product1@). The yield was free of charge via the Internet at http://pubs.acs.org.
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